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Outline: Ellipsometry Lecture Series

1. Polarized Light and the Dielectric Tensor
IREYERG E“”E.EE'”EE”E IRGIES aha Muerermatrices
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See slides from other sources.

2. Lorentz and Drude Models:
Infrared Response of Free Carriers
and Lattice Vibrations (Optical Phonons)

3. Interband Electronic Transitions:
Electronic Band Structure of Crystalline Solids
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Lecture 1 Outline:
Polarized Light and the Dielectric Tensor

Spectroscopy, Instrumentation, Bohr Model, Band Structure of Germanium
Maxwell’s Equations in Fourier Space

Propagation of Light in Vacuum: Plane Waves

Jones and Stokes Vectors

Reflection of Light: Jones and Mueller Matrices

Dielectrics: Electrodynamics of Continuous Media; Optical Constants

Propagation of Light in Solids: Inhomogeneous Plane Waves, Crystal Optics
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References:

Landau/Lifshitz: Electrodynamics of Continuous Media; or Jackson: E&M
Ashcroft & Mermin: Solid-State Physics

Mildred Dresselhaus et al.: Solid-State Properties

Yu and Cardona: Fundamentals of Semiconductors

Mark Fox: Optical Properties of Solids

Cohen/Chelikowsky: Electronic Structure and Optical Properties

Azzam/Bashara, Fujiwara, Tompkins/Hilfiker, Tompkins/Irene, Fujiwara/Collins:
Several good textbooks on Spectroscopic Ellipsometry

Palik: Handbook of Optical Constants (three volumes). Company data bases.

Short Course Lectures from instrument suppliers and other sources.
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Classification Schemes for Surface Spectroscopy |

primary particle surface

e i,y norr:nal EllipSOmetrV:
; secondary particle Photon in

o Photon out

Particles: Electron (e), ion (i), or photon (y)

The term spectroscopy implies that we prepare, vary, or measure the energy (wavelength)
and/or momentum (direction) of the primary and/or secondary patrticle.

For photons, we can also measure the polarization of the primary and/or secondary photon.

The interaction depth for thin films depends on the penetration depth of the primary particle

and the escape depth of the secondary particle. (This can be nanometers to micrometers,
depends on each technique.)




L4

Classification Schemes for Surface Spectroscopy i

ﬂ
Reflection: : _- —
Ellipsometry, XRR Diffuse reflection/scattering: _
PL, Raman, SIMS, Auger, XPS Diffraction: XRD

1. Specular reflection: The angle of reflection is equal to the angle of incidence. For
some spectroscopies, the angles are measured relative to the surface (XRR), for
others relative to the surface normal (SE).

2. Diffuse reflection or scattering: There is no well-defined direction, in which the
secondary particle exits. The scattering probability may depend on the angles.

3. Diffraction: Requires a periodic (crystalline) layer. There is a well-defined angular
relationship between the spacing of the diffraction (Bragg) planes and the momentum

of the incident/diffracted beams.




Classification Schemes for Surface Spectroscopy lll

Elastic: The intensity of the reflected (relative to the

incident) beam depends on the excited states of the system
(band gaps).

Inelastic: The energy difference (gain or loss) provides
information about vibrational (Raman) or electronic (Auger)
energy states. The strength of the scattering process
depends on the interaction with an intermediate state.

 Elastic scattering:

The energy of the incident particle equals that of the scattered particle.

e |nelastic scattering: The two

energies are different, depending on the energy

gained or lost by the interaction with the thin film.
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Classification Schemes for Surface Spectroscopy IV

Spectroscopic Ellipsometry: Elastic, specular, y —> v
Thickness, Energy (band gap), refractive index, composition

X-ray reflectivity: Elastic, specular, y — v
Thickness, density, surface/interface roughness

X-ray diffraction: Elastic, diffracted, y > y
Lattice constant, stress/strain, composition

UV _Raman Spectroscopy: Inelastic, scattered, y —> v
Vibrational (phonon) energy, composition, stress/strain

Secondary lon Mass Spectrometry: Inelastic, scattered, | — |
Composition, depth profile (sputtering), doping

Auger Electron Spectrometry: Inelastic, scattered, e —» e
Composition, depth profile (sputtering)

Rutherford backscattering: Inelastic, scattered, o —> o

Composition, some depth information, primary standard

BE BOLD. Shape the Future.
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Crystal Structure (Point & Space Group)

Electrons Phonons m

0.2-10 eV 10-80 meV Ashcroft & Mermin:
- Solid-State Physics
Near-IR, VIS, UV Far-IR to mid-IR
Magnetism Superconductivity Excitons Plasmons
Surfaces Topological Insulators Transport Polaritons

agnetic Storages

Shape
Photovoltaics nergy Conversio L asers Sensors



Crystallograp

—ourteen Bravais Lattices

agties centered (F) P simple
I body-centered
— JLtatn F face-centered
i C base-centered
gz = ag = 90°
Monocline e 2 Z Seven crystal systems become
o ofe 14 Bravais lattices with centering.

Orthorhombic

Qg = g3 = gy = 90°

) = ay F ag

Crystal = Lattice + Basis
(Wyckoff positions)

32 point groups
230 space groups (Intl. Tables)

Tetragonal g = o3 = gy = 90°
iy = dy = a3
Trigonal g = o3 = oy < 120°
4y = a, = a3 .
Cubic g = Mgy = gy = 30°

: Group Theory, Symmetry

Hexagonal

ty = as F a3
nyp = 120°
gy = gy = 90°

Rohrer: Structure and Bonding in Crystalline Materials

1 Zollner, 2023, AFRL Lectures Series 1 )




Nye: Physical Properties of Crystals

D Dielectric displacement
E electric field
& dielectric tensor l_)’ . EE')

For crystal class -3m,

the dielectric tensor

 hastwo independent diagonal components.
« off-diagonal components are zero.

Also: Stress/strain, magnetic, piezo, ...
Many different tensor properties.

Nye: Physical Properties of Crystals
(Appendix E) Stefan Zollner, 2023, AFRL Lectures Series 1




Matrix Elements: Selection Rules

Problem Statement:

* Initial state <i|: symmetry T Symmetry produces selection rules.
« Final state <f|: symmetry T H-atom: Al=+1

« Interaction Hamiltonian: symmetry I',

Question:

Is the transition from <i| to <f| allowed?

Is the matrix element <f|H|i> zero (i.e., transition forbidden).
Answer: The transition is forbidden, unless the final state
symmetry I; is contained in the product of I'; and I',.

This calculation uses character tables (or similar tools).

Example:
Optical transition from I';* to I';” (Ej'+A,) forbidden in Ge.

Note: Selection rules are relaxed, if symmetry is lowered.

(If we lose the inversion symmetry, parity rules go away.)




Materials Properties Accessible by
Optical Spectroscopy

 Mid-infrared spectral range: (FTIR-VASE)

e Insulator/semiconductor:
Lattice vibrations (optical long-wavelength phonons)

» Metal: Free carrier properties (density, scattering rate)
 Near-IR to visible to UV range: (RC-2, VASE, M-2000)

» Electronic excitations
e Band gap, interband transitions

* Ellipsometry allows study of semiconductors, insulators, and metals.

* Thin films and surfaces can be investigated with proper data analysis (fitting).

BE BOLD. Shape the Future.
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Grating Monochromator Fourier-Transform
Infrared Spectrometer

d(sinB—sino)=NA

exit slit
focusing
> mirror
diffraction
grating
colimating Constructive interference: AX=NA\
: mirror Destructive interference: Ax=(2N+1)A/2
entrance slit

Diffracted intensity depends RS Stefan Zollner. 20 Common for mid-infrared
on angle and polarization. gl spectroscopy (50-500 meV). I



Reflectance Spectroscopy Instrumentation

Spectroscopic Ellipsometer
190 to 2500 nm (0.5 to 6.5 eV)

Infrared Ellipsometer
1.25t0 40 pm (250 to 8000 cm-1)

X-ray diffraction & reflectance

« Thickness (100 to 10000 A)
* Absorption, band gap
» Refractive index

detector

Monochromator
Marizer

analyzer

Spectroscopic Ellipsometry:

FTIR ellipsometry:

« Very thick films (> 5000 A)
* Phonon absorption
* Optical Constants

Stefan Zollner, 2023, AFR

XRD/XRR:

 Crystal structure
 Lattice spacings (strain)
» Thickness (5 Ato 1000 A)
» Surface, roughness layer
* Density




Bohr Model for the Hydrogen Atom

n=3

n=2
M

n=1 ¢
.+Ze AE = hv
Quantum Numbers:
N 1.2.3 Relativistic corrections:
O’ ’ ,1]_1 s electrons (I=0) close to the core

| E(n)=—R/n? , J=L+S total angular momentum
m yool R=13.6 eV | Spin-orbit coupling L-S
S

+/- 1/2 e | =1, S=1/2 J=1/2 or 3/2




Bonding and Anti-Bonding Orbitals
Conduction Band

Valence Band

st W=y ty, st W=y -y,

Pxs py’ P
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A simple band structure for Germanium

p* '?‘A . ]=3/2 E K=mv?/2=p?/2m
CB (.{_) vo . /2 =h2k3/2m CB (empty)
empty T =1 > m: effective mass e
S* - S* > A
. o 5
............................ EF g GCJ EF EO band gap
ALAL o _ :
o [TITIT 3 =EEER j=3/2 8 X hh
o G Q | n v fo
Ve ‘g R\ FL2 SO
! ©
: = filled ge) :
filled o < filled
=
> | < A > 4s VB

Ge electronic configuration: ... 4s2 4p?

N shell forms sp3 hybrid: ... 4st 4p3




Band structure of Germanium

* A—, |=3/2 E FCC Brillouin zone
i X v =1/2
empty - 1=
S* I -
............................ S =t R R Band structure
1T LD é‘ NN : E
p iESE=E = ISEELEN =3/2 [
o FAY a“
E — ¥ =172 (s
S 9
filed | & | filled ®
7 i)
> i)
S - 2 - S <

Ge electronic configuration: ... 4s2 4p?

N shell forms sp3 hybrid: ... 4st 4p3




Band Structure of Silicon and Germanium

O

Need “extra representations” for
Ge because of strong spin effects.

BE BOLD. Shape the Future.

Yu and Cardona, Fundamentals of Semiconductors



Relativistic Effects: Darwin Shift: C, Si, Ge, Sn

i=3/2

The s* band moves down, as the elements get heavier.

In a-tin, the s* band moves into the p-band manifold, p j=1/2

between the j=1/2 and j=3/2 states.

This makes a-tin an (inverted) zero-gap semiconductor.



Band Inversion: Topological Insulators

Linear crossing
(Dirac point)
Inversion Symmetry

p* —

S*

Germanium o-tin

P
BE BOLD. Shape the Future. Band gap must be zero. J=1/2

Symmetry inversion in VB.



Reflection and Transmission

Also have diffuse scattering. , : —
Beer's Law: I(L)=l,exp(—aL)
Reflection Transmission ‘
Polarizer L Ins  Analyzer
| *»i | | Detector
Laser I . = 0 ] 0 N
e - I T ?
LI ﬂ'uut u;m Cuvette R, R,
Medium [ Mechemicdl
Chopper Lock-in ;
RS Amplifier
2 Medium 2
n B 1 ﬂ'l:mt
R = —— Absorption coefficient o (cm1)
3 Consider reflection losses

Law of reflection: o;,=a,,;
Snell’'s Law: n;Sina,,=Nn,Sina,,,
n: Refractive Index S Ze St

exp(—al) = =R



Transmission: LSAT or (LaAlO;), 5(SrAlITaOg), 35

(1= R)2e @ We need to know the complex refractive
=~ {_R2g-2ad index to calculate the reflection losses.
Very good for small absorption coefficients.

Transmission Measurement Absorption Coefficient

Tauc Plot

82K

100 K
200 K
300 K
392 K
480 K
567 K

0.8

L K BB B BN )

o000 00O OO

e & ¢ ¢ 0 0 0 0 0

Photon Energy (eV) Photon Energy (eV)




Crystalline CeO, on sapphire (liquid deposition)

transparent opaque transparent  opaque
Fluorite (O,°)
dielectric * Insulating CeO, film on single-side polished
function

sapphire, with band gap near 3.7 eV.

* Determine film thickness from interference fringes
in transparent region.

* Fit optical constants with basis spline polynomials.

K. Mitchell, C.O. Rodriguez, Y. Li,

2013; X. Guo, Boston Applied Stefan Zollner, 2023, AFRL Lectures Series 1
Technologies, Inc.




Thickness Fringes or Band Structure ??7?

Skyworks InGaP HBT
5G cell phone chip

Ellipsometry Spectrum

BE BOLD. Shape the Future.
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Scalar and Vector Waves
 Field: Scalar or vector depends on position r.
 Physical quantities are always real.
Scalar: energy, charge, etc.
Vector: momentum, current density, electric field, etc.

e Scalar wave

s(r,t) = A COS(I_() -7 —wt + @)
 Vector wave

E(#t) = E A COS(I_c) -7 — wt + @)
« Where do the complex notations come from?

BE BOLD. Shape the Future.
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Fourier Series of Periodic Functions

» Areal-valued scalar function f(t) is called periodic with period T,
if f(t)=f(t+T) for all values of t.

« A periodic scalar function with period T can be written as a Fourier Series

(o) f(x)
1
f(t) = EAO + 2 |A,,, cos(mwt) + B, sin(mwt)] /W/
m=1 D »

| X
with angular frequency o=2n/T and Fourier coefficients

A, = %f_if(t) cos(mwt) dt

B, = % f_z f(t) sin(mwt) dt

BE ROLD._ Shape the Future. .
Stefan Zollner, 2023, AFRL Lectures Series 1
Jackson, E&M, 1975




Fourier Series of Periodic Functions

« Dealing with harmonic functions (sin, cos) is not convenient, because
 We need two functions for each harmonic.
« Taking derivatives is not easy, because sin and cos switch at each order.

* A periodic scalar function with period T can be written as a Fourier Series
oo

f(t) = z Cm €xp(—imwt) Ellipsometry analyzes
m=—oo complex Fourier coefficients.
with complex Fourier coefficients
( A, "
— m =
2

T
w [w 1
Cm = ;J o fO) explimot)dt =\ = (Apn +iBy) m>0
W

1 .
2 (A-m —iB-m) m <0 Jackson, E&M, 1975

 The Fourier coefficients are now complex, but the function f(t) is still real.
 The imaginary parts all cancel, if the complex coefficients c,, are defined correctly.




Fourier Transforms of Non-Periodic Functions

If the function f(t) is not periodic, then the period T becomes infinite and the frequency spacing
o between overtones becomes very small.

1 (0 0]
The Fourier series now becomes a Fourier Integral. f(t) = \/?J F(w) exp(—iwt)dw
TJ_—0
. | I
with the Fourier transform F(o) F(w) = \/?j f(t) exp(iwt)dt
TTJ—00

The prefactors 1/72x before the integral can vary (depends on convention).
The Fourier transform function F(w) is allowed to be complex, because it is not a

meaningful physical quantity. 1
' : ——exp(iwt)
Orthoggonallty and completeness Nz p
i exp[i(w — a)')t] dt = 5(0) _ a)') Orthonormal basis of
21 )_, Hilbert Space of real functions

1 (0.0)
L ettt - 96l do = 8-

2m —00 Stefan Zollner, 2023, AFRL Lectures Series 1 32




Math with Fourier Transforms

» Convolution theorem:
The Fourier transform of a convolution equals the product of the Fourier transforms.

(f * 9)(O) = j F(Eg(t — )t

_ [+ ) expliandt = VTR ()6 (0)
— * exp(iw =V2nF(w)G(w
\/271' —00 J P
» The Fourier transform of the derivative of f(t) equals —ioF(®).
1 (00]
— '(t) exp(iwt)dt = —iwF (w
—| F©expton (@)

 The complex conjugate of the Fourier transform equals F(—m).

F(w) = F(-w)

Jackson, E&M, 1975
BE BOLD. Shape the Future.
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Fourier Series in Multiple Dimensions

A real-valued scalar field s(r) in a Bravais lattice (with Bravais lattice vectors T and reciprocal
lattice vectors G) is called periodic, if s(r+T)=s(r) for all Bravais lattice vectors T.

A real-valued periodic scalar field s(r) in a Bravais lattice can be written as a

Fourier sum in reciprocal space

s(r) = 255 exp(i5 - 7)

=y

G
with complex Fourier coefficients
1 - o = -
Sg = Vfc s() exp(—iG - 7)d> 7

where C is the unit cell with volume V. G is a reciprocal lattice vector.
The same equations apply to a real-valued periodic vector field E(r).

Ashcroft & Mermin, Appendix D

= VJ (1) eXp(—iG : F)dg’ @l Stefan Zollner, 2023, AFRL Lectures Series 1
C

1




Fourier Transforms in Multiple Dimensions

Fourier transforms can also be generalized to multiple dimensions for scalar fields

1 3 © . . . 1 3 *® .
s(#) = (E) ﬂ! S(k) exp(ik - #)dk S(k) = (ﬁ) ﬂ! s(¥) exp(—ik - 7¥)d37
and vector fields
q LN ([ 2o e q 1\ (] = i,
E@) = <E> ﬂ! E(k)exp(ik - 7#)d3k E(k) = (E) ﬂ! E(#) exp(—ik - #)d37

The fields s(r) and E(r) in real space have real values.
The Fourier transforms S(k) and E(k) have complex values, but their imaginary
parts cancel out in the summation.

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




Microscopic Maxwell’'s Equations (in Vacuum)

Electric field strength E(r)

Magnetic field strength H(r)

Current density j(r), charge density p(r)

Permittivity of free space ¢g,, permeability of free space p,.

V-E = g =0 Gauss’ Law (Coulomb)
V-H= Gauss’ Law (magnetic field)
VXE =—py, g Faraday’s Law (Lenz)

VX H = J+ & ZE = & g’i Ampere’s Law

Homogeneous (in vacuum), linear, first-order, constant coefficients, partial DEQ.

Vector analysis can be used (Stokes’ Theorem) to transform Maxwell’'s equations into integral
form. 1

Introduce speed of light c =

Units: MKSA (SI). VéoHo Jackson, E&M, 1975




Wave Equations (in Vacuum)

»  Electric field strength E(r); Magnetic field strength H(r).
 Maxwell's equations can be combined to obtain the vacuum wave equations
(second order, linear, homogeneous, constant coefficients).

—,» 10%

VE-Gee =0 _ 1

V,Z_,_iazﬁ B VEolo
c? dt?

Plane wave solutions:
E@#¢t) = E, exp[i(l_c) T — a)t)]
H(@#t) = H, exp[i(l_c) 7 — wt)]

« Why are the solutions complex ?

Plane wave is not physical (infinite, monochromatic). Form Gaussian wave packets.
* Poynting vector indicates energy flow: - — —

S=EXH

Jackson, E&M, 1975
BE BOLD. Shape the Future.
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Plane-Wave Solutions to Maxwell’s Equations (Vacuum)

« Electric field strength E(r); Magnetic field strength H(r).
* Any electric and magnetic field strength can be written as a Fourier-transform

E@# 1) = <2i) f dw Jrgr d3k E')(E, w) exp[i(l? - 7) — wt]

T J

— )

2
F(kw) = (%) [ ae [[[ @7 B0y expl ik -7) - ot

 The Fourier transforms are complex, but the E(r) and H(r) fields are not.
 Signs: Nebraska convention as modified by Aspnes.
Kinetic energy of free particle in quantum mechanics is positive. Classical wave travels along k.

« The complex plane waves  _, N =
E(# t) = Egexpli(k - 7 — wt)]

H(# t) = H, exp[i(l_é 7 — wt)]

are just one term in the Fourier transform. The entire integral is real.
(Add complex conjugate.)
 Solutions to Maxwell’s equations are superpositions of plane waves. Jackson, E&M, 1975




Fourier-transform Maxwell’s Equations

Substitute plane wave solutions into the differential form of Maxwell’'s Equations:

V-E = Gauss' Law (Coulomb)
V-H=0 Gauss’ Law (magnetic field)
VXE =—u, %—Iz Faraday’s Law
VxH=¢g2Z Ampere’s Law

E(r t) = 0 exp[l(k 7 — wt)]
H(#t) = H, exp[t(l? 7 — wt)]

‘E,=0 Gauss’ Law (Coulomb)
0 Gauss’ Law (magnetic field)




Fourier-transform Maxwell’s Equations

E@t) = EO exp[l(k 7 — wt)]

H(#t) = H, exp[l(l_c) 7 — wt)]

k-E,=0 Gauss' Law (Coulomb)

k-Hy=0 Gauss’ Law (magnetic field)

kx E, = wugH, Faraday’s Law

k x Hy = —we,yE, Ampere’s Law

k? = 6;—22 Wave equation (Dispersion relation)

Any solution to Maxwell’s equation in vacuum can be written as a superposition of plane waves.
Electromagnetic waves are transverse (E, H perpendicular to k).
E L H, Eg=Z,H,, Zo=\(1y/e,)=377 Q impedance of vacuum.

SISl tel SRR i ARRE: Stefan Zollner, 2023, AFRL Lectures Series 1




Polarized Light; Jones Vectors

E(#¢t) = E, exp[i(k T — wt)]
« Select k along the z-axis. Then two field components E, and E, are sufficient.

- i)
E@ b = ( E"x) sz — wi)]
Oy

« An EM wave is described by seven (7) real quantities:
« Direction of wave vector (two angles ¢ and 0).
 Magnitude of wave vector (and angular frequency).
« Two complex amplitudes E,, and E,, (Jones vector).
 One of these (absolute phase) cannot be measured; leaving six parameters.

Eox\ Xexpily) sin Y exp iA _
(Eoy) = Eq (Y exp iAy) Eo ( COS | )exp LA,

J. Humlicek, in Tompkins & Irene
(Handbook of Ellipsometry)

« We don't care about the light intensity and the absolute phase.
« wyand A are called the ellipsometric angles; describe polarization of wave.
o y=arctan(X/Y); A=Ay—Ay; p=tanyexp(iA);




Polarized Light; Jones Vectors

A=0
Jones Vector
(sin Y exp iA)
A=—m/2 cos
Angle vy:
Direction of linear polarization
—T<ALT

H. Fujiwara
BE BOLD. Shape the Future.
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o-polarized Polarized Light; Jones Vectors

A=0
y=m/2
s-polarized _ _
Afg The polarization state
459 linaar " of polarized light can
A:% be described with two
Y=
right-circular . paramete_rs Y and A
s called ellipsometric
left-circular angles.
A=7/2
y=m/4

elliptical AT H. Fujiwara
SISl tel SRR i ARRE: 0£\|JSTC/2 ner, 2023, AFRL Lectures Series 1




Polarization Ellipse

B(z=0,t) = E, (Si“;ﬂs’fpp iA) exp[—iw(t — 1)t]

At z=0, the electric field vector traces out an ellipse.

Parameters of the ellipse:

e Azimuth 3

e Ratio tany major/minor axis
Ellipticity e=tany=B/A

can be calculated from y,A.

J. Humlicek

Stefan Zollner, 2023, AFRL Lectures Series 1




Representation of Polarized Light by Complex Numbers
SIny exp lA) exp|—iw(t — 7)t]

B(z=0,t) = ( fos

__expiA  tand +itany
i tany 1—itandtany

Complex number y is related to
ellipticity and azimuth of the

Q) - X polarization ellipse.
T &
A NN i - Also Jones ratio:
> & E
Q D %, p = tany expiA = —
Ey

(Dic
% & J. Humlicek

Stefan Zollner, 2023, AFRL Lectures Series 1




Optical Elements calcite
to Produce " & | prism
Polarized Light

! -/ e

/ ey wire grid (IR)

4
t
Input Ray

Linear polarizer:
Mica sheet, Prism (VIS/UV), wire grid (IR), metallic mirrors (VUV)
Compensator/retarder: 21T T

Quarter-wave plate A= 5 Ine —nold = 2 H. Fujiwara



Decoherence and Depolarization

In practice, light sources are superpositions with several frequencies,
called wave packets. Similarly, light sources have mixed polarization states.

E(#t) = E, exp[i(l_c) ‘T — a)t)]

BE BOLD. Shape the Future.
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Stokes Parameters
E(#t) = E, exp[i(l_é -7 — wt)]

So=Ie+1, = ExEy + EyE; Total intensity
51 =1 — I, = ExEx — E\Ej s-polarized minus p-polarized
Sy = Iy — I_450 = ExEy + EYE,, Diagonal difference
S3 = Iz — I, = 2Re(E;E,) Right minus left circular
JSf +S; + 53 Degree of Polarization (%)
0<p= <1
S0
S, The Stokes parameters are related to

tan(29) = = the azimuth 9 and ellipticity y of the
' polarization ellipse.

e the Future.
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Poincare Sphere

S1 = cos 2y cos 29 = — cos 2y
S, = cos 2y sin 29 =sin 21 cos A
S3 = sin2y = —sin 2y sin A

The Stokes parameters for completely
polarized light, taken as coordinates,
define a point on the surface of a unit
sphere (Poincare sphere).

Poles: Circularly polarized
Equator: Linearly polarized

BE BOLD. Shape the H. Fujiwara fan Zollner, 2023, AFRL Lectures Series 1



Partially Polarized Light

Totally polarized light: point on the surface of Poincare sphere.
Partially polarized light: point inside the sphere. .
Completely unpolarized light:  point in the center of the sphere. ' H. Fujiwara

BE BOLD. Shape the Future.
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Origins of Depolarization

More general:

Patterned substrate, contacts,
Contaminated substrate
Peeling layers, etc.

My strateqgy:

Always acquire full Mueller matrix.
Inspect off-diagonal blocks.

If there is nothing to see, deselect
Mueller matrix items, analyze isotropic
ellipsometric angles and depolarization.

Measurement time is the same, but file
Size increases.

BE BOLD. Shape the Future. G CUP e r< W =~ H. Fujiwvara i




Reflection from a Rough Surface

Specular Specular+Diffuse
Usually still polarized

Debye-Waller correction:
. . Also: |. Ohlidal, F. Lukes,
Assumes sinusoidal roughness and K. Navratil, Surf. Sci

Rrough_Roexp[—(4TCGnCOSG/7\4)Z] 45, 91 (1974). 98 citations.
o rms surface roughness parameter

LR RS R R ST I Ty P L L Y

D.K.G. de Boer, Phys. Rev. B 49, 5817 (1994). Stefan Zollner, 2023, AFRL Lectures Series 1



Raleigh Scattering (Elastic)

? X Why is the sky blue?
Incoming wave |

Rayleigh
S::E‘ng‘i ng

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




Ellipsometry Measurement

Polarization State J= (EOX)
Jones Vector Eoy

Ellipsometry Experiment

Yoy T
pp Tps
Jout = ( T, )]in

Tsp S
Fresnel reflection coefficients p = tany) exp iA
Yop  Tps B P Pps Fresnel reflection ratio
Yoy Tec) — Iss 1 . L
sp °SS Psp Anisotropy or depolarization (not both)

Isotropic surface: Top  Tps\ _ p O
Off-diagonal elements vanish. Tsp  Tss = Tss 0 1

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




What is an Isotropic Surface?

o Surface of a cubic crystal (any crystal orientation)
o Surface of an amorphous material

e Surface of a uniaxial crystal, If

e the optical axis is perpendicular to the surface

 the optical axis is perpendicular to the plane of incidence
e the optical axis is in the plane of incidence

 Result: Diagonal Jones Matrix (’"m? ’”PS) _ . (p 0)
: Tsp  Tss SS\0 1
e See Case AIn O. Arteaga,
Thin Solid Films 571, 584 (2014).

Azzam/Bashara

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1



Jones Matrix for Optical Elements

Optical element Corresponding Jones matrix
. . L . . ’ 1 0
Linear polarizer with axis of transmission horizontall'] .
| o - | 0 0
Linear polarizer with axis of transmission verticall'! 0 1
| o - | _ 1/1 +1
Linear polarizer with axis of transmission at +45° with the horizoniall'] E 41 1
=41 0O
Quarter-wave plate with fast axis verticalllinote 1] e 4 _
0 —z
_im /1 0
Quarter-wave plate with fast axis horizontallZ! e 4 0
1

Half-wave plate with fast axis at angle # w.rt the horizontal axisl®l | e 2

_:(cc}szﬁ'—singﬂ 2 cos @ sin 0 )

2cosfsind sin® @ — cos® #




Ellipsometry of a flat surface (bulk sample)

Fresnel Reflectance ratio We measure the change in the polarization state
‘l‘ of light, when reflected by a flat surface (bulk).
Rp Erp E, iA
yo, = .—5 — tan WYe

R E.

s ip rs

sin® ¢{1+ tan? ¢(;—pj }
Yo,

Angle of incidence

£

Result;

=g +ig,

Optical constants

versus photon energy ' Stefan Zollner, 2023, AFRL Lectures Series 1



Ellipsometry Instrumentation

\ VASE: One wavelength at a time:

Calculate derivatives.
Resolve narrow line shapes.

Dual rotating compensator (RC2):
Full 4 by 4 Mueller matrix

Fourier-Transform Infrared (FTIR)

Single-wavelength ellipsometer

Far-infrared ellipsometer (not shm
Terahertz ellipsometer (not shown)

VUV ellipsometer (not shown)
Inline (fab) metrology tools

=g :Te [ Mo BV TR RY Imaging ellipsometer (Accurion)
What's next ???

Lectures Series 1



Mueller Matrix Ellipsometry

S Polarization States for
¢ - S1 Incident and Reflected
- 52 Beams Described by
| _ S Stokes Vectors
Ellipsometry Experiment 3

Sout = MSjp

MOO MOl MOZ M03

W = Mlo M11 M12 M13

Measures anisotropy and depolarization.
Requires two rotating compensators.
Beetles, cancer research, magnetic field.

BE BOLD. Shape the Future. Stefan Zollner, 2023, Fujiwara & Collins



Mueller Matrix for Isotropic Non-Depolarizing Surfaces

O. Arteaga
BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




Symmetries of Non-Depolarizing Mueller Matrices

O. Arteaga, TSF
el ok sliee i Fulie. Stefan Zollner, 2023, AFRL Lectures Series



Mueller Matrix Examples: Si Calibration Wafer

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1



Mueller Matrix Examples: Si with 198 nm Oxide

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1



MM Examples: c-oriented Sapphire (SSP)

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1



MM Examples: c-oriented Sapphire (DSP)

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1



Dielectric in Static Electric and Magnetic Fields

d

O

v 1

- ®a
&« HEs
L Xl X

Ivlvlvlvlvlvl

I

AAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTT‘A

Applied external electric field E,
(homogeneous, constant)
Infinite dielectric

(ignore boundary effects)

Charges move in response to E,
Average charge density still zero.
Induced (depolarizing) electric field E;
weakens applied field E,.

Local electric field (inside)
E:EIocaI:EO-I_El
Metal: E,,.,=0 (for ®=0)

Dielectric: E,.,<E, (screening)
E\.cas depends on crystal shape (boundary conditions)

Stefan Z S o
aal Nye, Physical Properties of Crystals R
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Dielectric Polarization, Dielectric Displacment

Applied external electric field E,
(homogeneous, constant)

Infinite dielectric (ignore boundary effects)
Total electric field E=E,+E;

-q

+q

+q

Charges move: ° S s
Dipole moment _q .
p=qd ¢

(d from —q to +Qq) o d

+q

Dielectric polarization P

Dipole moment per unit volume

Dielectric Displacement: D=¢g,E+P

Linear dielectric susceptibility
:SOXeE

Dielectric constant: e=1+y,, D=¢g,cE

Nye, Physical Properties of Crystals

N
v




Complications

d

O

|

I

1
v

€ EE
&« HEs
L Xl X

1
1
vivivivivivivivivivivy!

Y
)

AAAAAAAAAAAAAAAAAAAAAAAAAAAATTTT?A

EIoca E1

EIocaI:EO'I'El
Anisotropy
requires tensors. E
0

Ferro-/Pyro-/Piezoelectricity

Non-zero polarization for zero field (E,=0).
P(E,=0)=P,+pAT+d; X,

oP /ot=0

Nonlinear effects

P(E)=P +egxE+ey e PERE+egy ¥ EEE...

Magneto-electric effects
P=P +gyyE+e,0H e= 1+Xe

Dielectric Displacement: D:808E

D=P +eE+epyE+e,0H
D=P +¢,eE+¢g,0H
Dielectric constant ¢ Nye, Physical Properties of Crystals




Magnetostatics and Magnetization

Electric field strength E

Dielectric polarization P: electric dipole moment per unit volume
Dielectric displacement D=g,E+P= P +¢,E+eqy E+e,0H

Magnetic field strength H

Magnetization M: magnetic dipole moment per unit volume

M=M +pxH+1evE (M, remanence, oM, /ot=0)
Magnetic susceptibility y,,

Magnetic flux density B
B=poH+M=M+pouH+pgyE
u=1+y,, magnetic permeability (u=1 unless »=0)

For electromagnetic waves with ®#0, we can set u=1.

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




AC Response Function: Dispersion, Nonlocality

How does a dielectric respond to an electromagnetic wave?
Polarization may be delayed.

E(r,t) = Eyexp [i(k o C‘)t)] Polarization may be non-local.
¢
P(# 1) = g f o (@ 7t OEF@, t)dt'd37"

Time invariance
Infinite homogeneous crystal

t
P(# 1) = g j Y. (' — 7t — )E@, t")dt' d37

Use convolution theorem for Fourier transforms

P(k' (‘)) = €oXe (k’ a)) E(k’ a)) Nonlocal effects scale like 2ran/A,

D(k,w) = ee(k, w) E(k, w)
I Dielectric function € depends on frequency o (dispersion). -




300

Nonlocality Example: Birefringence in Cubic Crystals

Ag;j (l_é) = Qjjrikrk
Wavslengtn _ (micron)

WLl LE LE & | ——
! T 1 T T

°

b

ZT—M T 1

© or I ]
o o
Fl e g Il [10]
X ® = + @ i -
S R )
—i
C ber -
|8 é ok !
— 3 - 4
c :°
N T
] ‘T )
5 :

} Photon Energy 7

S R T N I i L
ok} [o3rg

c.8 og ] I 1.2 ﬁ
Photon Energy {evi

vanishes along [001],
but not along [110]

Birefringence

100
An=n,,,—N o
110~ 1100 =
X
Strong near "é
absorption edge. =
lO
—
—i
c
T 10
c
<
3

Birefringence in GaAs near band gap

Model from k.p theory

)
<
T

End of 157 nm
lithography (2003)

®)

200 400 800 1600
A (nm

Agranovitch & Ginzburg, Crystal Optics

Yu & Cardona, SSC 9, 1421 (1971)

J.H. Burnett, PRB 64, 241102 (2000)



Causality: Charge Movement Follows the Field
P(# 1) = g, j)(e(?’ — 7t — t)EF, t)dt'd3#

Response function x.(G" —7t'—t) =0fort' >t
The charges cannot move before the field has been applied.

Kramers-Kronig relations follow: 3@ x(w) S
e - - > (1)’ — B
D(k, w) = eoe(k, a)) E(k, w)
Cauchy
2 “w'ey(w)dw' | |
g(w)—1=— > Contour integrals in complex plane:
n 0 W' — w? The real part of € can be calculated if the
20 0 1 (w’)dw’ imaginary part is known (and vice versa).
Er (a)) = —— = Similar Kramers-Kronig relations for

0 W —w? other optical constants.




Maxwell’'s Equations for Continuous Media

V-D=p=0 Gauss’ Law (Coulomb)
V-B = Gauss’ Law (magnetic field)
VXE =— 2—? Faraday’s Law

= = , 9D D ,
VXH_]JFE_E Ampere’s Law

Anisotropic wave equation:
Take curl on both sides in Ampere’s Law and Faraday’s Law
AE — ﬁ(ﬁ , g) _ Moiv’ x Mﬁ The terms in. red.c_lo nqt van_ish | |
0 (cannot be simplified) in anisotropic media.

C C
~ =2 N7 Refractive index n=Vs Series 1



Macroscopic Optical Constants

n: refractive index, n=c/v Why not n—ik?

k: extinction coefficient Wave goes like exp[i(kx—mt)]

n+ik: complex refractive index EE: j=—i

R: reflectance at normal incidence (l.q/1;)

T: transmittance (l,4/1o)

R+T+A+S=1

o absorption coefficient

a=A4nk/2 _ ) ) Absorbed power per unit volume:

e complex dielectric function p .

e=g,+ie,=(n+ik)? 7= j+E = 0oE?

G: complex optical conductivity

o=—igym(e—1 All are connected through
0 _ :

n=Im(-1/e) loss function Maxwell’s equations.

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




Assume p=1: Crystal Optics

V-D=p=0 Gauss’ Law (Coulomb)
V-B=0 Gauss’ Law (magnetic field)
VXE = —2—]: Faraday’s Law

S.o_ > ,0D D :
VXH_]"'E_E Ampere’s Law

Anisotropic wave eguation:
Take curl on both sides in Ampere’s Law and Faraday’s Law

1 0% - For u=1 we get a single wave equation for E, from which

AE — V(V ; E) = C_zﬁEE H can be calculated as well. E and H are decoupled.
- a —> -
AH = —¢& EV X eE Use Berreman / Yeh 4x4 matrix formalism for (E,H).

Agranovitch & Ginzburg, Crystal Optics

SISl tel SRR i ARRE: Stefan Zollner, 2023, AFRL Lectures Series 1




Inhomogeneous Plane Waves

Plane waves do not solve Maxwell’'s equations, if Im(g)=O0.

The amplitude of the plane wave decays in
the medium due to absorption.

sin @ n
Snell: 1 — 1

Sin 92 n-
Inhomogeneous plane wave (aka generalized plane waves):
E(#t) = E, exp[i(l? -7 — wt)]

Allow complex wave vector: k = k, + ik, = k. + ik,

— — — o
E(F, t) = EO exp[_kz ) F] eXp[l(kl ’ 7:) B (l)t)] Mansuripur, Magneto-Optical Recording, 1995

Stratton, Electromagnetic Theory, 1941/2007

BE BOLD Attenuathn e. Propagatlon 023, AF Orteaga,'TSF 571, 701 (2014).




Maxwell’'s Equations in Continuous Media

V-D=0 Gauss’ Law (Coulomb)
V-B=0 Gauss’ Law (magnetic field)
VXE = ‘;f Faraday’s Law

VxH =22 Ampere’s Law

at
E(#t) = E, exp[i(l_c) -7 — wt)]

etc. for other fields

Inhomogeneous plane waves
with complex wave vectors

0 Gauss’ Law (Coulomb)
=0 Gauss’ Law (magnetic field)
Faraday’s Law

Stratton, Electromagnetic
Ampere S LaW Theory, 1941/2007

| & & &

-
X X
Ll 5
1l
£
S
o) ©
(@)



Anisotropic Wave Equations in Continuous Media

k - 1_50 =0 Gauss’ Law (Coulomb)

k - §O =0 Gauss’ Law (magnetic field)
k x E, = wB, Faraday’s Law

k x ﬁo = —wﬁo Ampere’s Law

l_jo(l_(), (1)) = 808(]_{), O))Eo(]_{), C())
§O(ki (1)) = ‘U.()‘U.(k, (l))ﬁo(k, (1))
Anisotropic wave equation: |/}’|ZE’O — (k- Ey)k = —uowk x uH,

Constitutive Relations

D and B are transverse,

Isotropic wave equation: but E and H are not.




Assume p=1: Crystal Optics

k - 1_50 =0 Gauss’ Law (Coulomb)

k - §O =0 Gauss’ Law (magnetic field)
k x E, = wB, Faraday’s Law

k x Hy = —wD, Ampere’s Law

N (1 _ 7 o (1 For u=1: Algebraic equation for E, from which
Dolk, @) = eoe(k, ) Eo(k, ) H caun be caglculated }

§0(k, (1)) - ‘U.()‘U.(k, (l))ﬁo(k, (1)) )
Anisotropic wave eguation: |]_{’|ZE’ _ (l_é E )]_{’ _ w—eE
0 0 c2 0
- 2 —
|k| HO = —an)k X EEO
Isotropic wave equation: Berreman & Yeh 4x4 transfer matrix for (E,H).

C Refractive index n=\g
—, 2

w
k|" = en— jVphase = 7z = 71 7 I Agranovich & Gmaburg,Crysta Optcs
| | K c2 p n\/_ Agranovitch & Ginzburg, Crystal Optics




Berreman Transfer Matrix Formalism

» Tompkins & Hilfiker: Spectroscopic Ellipsometry. Very simple, only isotropic layers.

» G.E. Jellison, Data Analysis for Spectroscopic Ellipsmetry, in Tompkins & Irene: Handbook of Ellipsometry.
More formal treatment, but mostly focused on isotropic layers.

* M. Schubert, Theory and Application of Generalized Ellipsometry, in Tompkins & Irene: Handbook of
Ellipsometry. This is the theory behind the CompleteEase and WVASE32 software.

» M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980).

* P. Yeh, Optical Waves in Layered Media (Wiley, NY, 1988).

* R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

» M. Mansuripur, The Physics of Magneto-Optical Recording (Cambridge University Press, Cambridge, 1995).

* Original references:

» F. Abeles, Ann. de Physique 5, 596 (1950).

* D.W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, JOSA 62, 502 (1972).

* P. Yeh, Optics of anisotropic layered media: A new 4x4 matrix algebra, Surf. Sci., 96, 41 (1980).

* H. Wohler, G. Hass, M. Fritsch, and D. A. Mlynski, Faster 4x4 matrix method for uniaxial inhomogeneous media,
JOSA A 5, 1554 (1988). Also JOSA A 8, 536 (1991).

* M. Schubert, Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,
Phys. Rev. B 53, 4265 (1996).

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1




Longitudinal Solutions to Maxwell’s Equations (u=1)

k-eEy, =0 Gauss' Law (Coulomb)

k - _}, =0 Gauss’ Law (magnetic field)
k X E}, = w§0 Faraday’s Law

k x Hy = —weE, Ampere’s Law

Transverse solution: D Is transverse

-2 —

10 and [K| By — (k- Eo)k = % By and |k| Hy = —eqwk x E,

Longitudinal solution:

10 and E, Il kand Hy =0

Longitudinal solutions are
also called plasmons. CE S R —
Agranovitch & Ginzburg, Crystal Optics




Berreman Modes: Insulator (L|F) on I\/Ietal (Ag)

WAVE NUMBER IN cM™! T

joo0 __800 _glv_t':_____goo 400 307 250 200 S0FE---_ . _-ocz==
0.8 } // |
| ! —— P POLARIZATION.|
y | —==S POLARIZATION | © 50
o6 , I )
I ' <
P -
9 | transverse > 100
- 1
e 04
w
: |
. l , 150 \ | 9=70"Y
O } YV LF/Ag MLEss
ongltudina - i v 17 1
g ) 350 nm LIF on Ag IR R U RS ISR R Y DU
0 | | I | 500 600 700 800 500 600 700 800
10 125 14.8 20 25 326 40. 50
WAVELENGTH IN MICRONS LiF on Ag WAVENUMBER (cm™) LiF on Si

Humlicek: The Berreman peak is an interference effect, which
occurs when g, ,=0. It is not a longitudinal mode.

g =Y /ollngr J(1J 2 AL | ootlirge S arigae |

D.W. Berreman, Phys. Rev. 130, 2193 (1963) J. Humlicek, phys. stat. sol. (b) 215, 155 (1999)



Energy density, Poynting Vector

1 - — - - 1 - - — —
u=§(E~D+H-B) =§(E-eer+H-u0uH)
Energy density: 02u € : :
= _Ogl.. Implies g; symmetric tensor (B=0).
OE,0E; 27V

Onsager relation
o ] ] €E€Y =2
in isotropic medium: u = —= |E]

Poynting’s theorem (energy flow): %% _ g g¢_- p EMwavehasno

ot ) Ohmic power joE
au = 1 - — 1
— — - — - - — - P
—=-V:-§=-V-—(EXB)=— VXE—-E-VXB —=7.-FE = gE2
> o (ExBY=-=( ) =] E =0k

Longitudinal modes carry no energy.

Agranovitch & Ginzburg, Crystal Optics

SISl tel SRR i ARRE: Stefan Zollner, 2023, AFRL Lectures Series 1




Summary

» Fourier series and Fourier transforms: Plane waves
 Maxwell's Equations in vacuum (general and plane-wave format)
* Polarized light

« Jones and Stokes vectors

» Polarization ellipse, Poincare sphere
» Ellipsometry experiments

e Jones and Mueller matrices
* Electrodynamics of continuous media
» Crystal optics: Maxwell’'s equations in crystals

BE BOLD. Shape the Future.

Stefan ZO”ner, 2023, AFRL L ] Linear \.‘P\Gircular + Elliptical



Thank you!

Questions?

BE BOLD. Shape the Future.
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